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The question we want to address

Initial con�gurations I = 10∗

Transitions T = . . .

Bad con�gurations B = 0∗ + 0∗10∗1(0 + 1)∗

Is there a path from some c ∈ I to some c′ ∈ B along T?
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Regular Model Checking

Input

A regular set of initial con�gurations I,

a regular set of bad con�gurations B, and

a transducer T de�ning the transitions.

an NFA T = (Q,Σ× Σ, q0,∆, F )Question

Does ReachT (I) ∩B = ∅ hold?

Remark
The Regular Model Checking Problem is undecidable.

Thus, all algorithms are necessarily semi-algorithms.
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Motivation

P

I
B

Proof
A (regular) proof is a (regular) set P with

I ⊆ P ,
B ∩ P = ∅, and
P is inductive, i.e., u ∈ P and (u, u′) ∈ L(T ) implies u′ ∈ P .
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Motivation

P

I
B

Tools for Regular Model Checking

Faster and

T(O)RMC

Problem: The performance is poor for large representations of I!
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Motivation

P

I
B

What we do

We approximate I and B with �nite sets.

We use sampling strategies known from automata learning.

We compute smallest proofs using logic solvers.
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Angluin's Learning Framework
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a, b

Yes!No, counterexample aa!
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b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L?

?

a, b
Yes!No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L??
a, b

Yes!

No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L?

?

a, b

Yes!No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L??
a, b

Yes!

No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Our Learning Framework
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a, b

Yes!No, counterexample aa!
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CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof
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1. Sample S = (S+, S−) where S+, S− ⊆ Σ∗ are �nite.

2. Compute a smallest inductive DFA A consistent with S, i.e.,

S+ ⊆ L(A) and S− ∩ L(A) = ∅.

3. Equivalence query: if A is inductive, it is enough to check

I ⊆ L(A) and B ∩ L(A) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

1. Sample S = (S+, S−) where S+, S− ⊆ Σ∗ are �nite.

2. Compute a smallest inductive DFA A consistent with S, i.e.,

S+ ⊆ L(A) and S− ∩ L(A) = ∅.

3. Equivalence query: if A is inductive, it is enough to check

I ⊆ L(A) and B ∩ L(A) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

1. Sample S = (S+, S−) where S+, S− ⊆ Σ∗ are �nite.

2. Compute a smallest inductive DFA A consistent with S, i.e.,

S+ ⊆ L(A) and S− ∩ L(A) = ∅.

3. Equivalence query: if A is inductive, it is enough to check

I ⊆ L(A) and B ∩ L(A) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

Correctness

The algorithm terminates once L(A) is a proof.

Successive DFAs are di�erent and the size of successive DFAs

increases monotonically.

Computing minimal DFAs guarantees termination if a proof

exists.
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Angluin-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S
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L(A) is
a proof
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Angluin-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
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query

Membership query

S A
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u �yes� / �no� / �?�
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Realizing the Black Box

Given a sample S and a transducer T .

Main Idea
Construct a formula ϕS,Tn such that

ϕS,Tn is satis�able

⇔
there exists a DFA A with n states such that A is consistent with

S and inductive with respect to T .

Theorem
By increasing the value of n, we will �nd a smallest DFA consistent

with S and inductive with respect to T if one exists.
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Encoding DFAs

A =
(
Q,Σ, q0, δ, F

)
If Q, Σ, and q0 are �xed, then every DFA is completely de�ned by δ
and F .

Use Boolean variables dp,a,q with the meaning:

if dp,a,q ≡ true, then δ(p, a) = q.

Use Boolean variables fq with the meaning:

if fq ≡ true, then q ∈ F .
Use constraints

¬dp,a,q ∨ ¬dp,a,q′∨
q∈Q

dp,a,q

Let ϕDFAn be the conjunction of these constraints.
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Encoding DFAs

Construction of a DFA from a Model
Let M |= ϕDFAn . Then, we construct a DFA

AM = ({q0, . . . , qn−1},Σ, q0, δ, F ) as follows:

δ(p, a) = q for the unique q ∈ Q such that M(dp,a,q) = true.

q ∈ F if and only if M(fq) = true.

Impose restrictions on the behavior of AM by introducing the two

formulas

ϕSn that enforces that AM is consistent with S, and
ϕTn that enforces that AM is inductive with respect to T .

ϕS,Tn := ϕDFAn ∧ ϕSn ∧ ϕTn is the desired formula.
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Formula ϕSn

Let S = (S+, S−). Establish S+ ⊆ L(AM) and S− ∩ L(AM) = ∅!

Introduce variables xu,q for u ∈ Pref(S+ ∪ S−) with the meaning:

if AM : q0
u−→ q, then xu,q ≡ true.

Introduce constraints:

xε,q0

(xu,p ∧ dp,a,q)→ xua,q for ua ∈ Pref(S+ ∪ S−)

xu,q → fq for u ∈ S+

xu,q → ¬fq for u ∈ S−

Let ϕSn be the conjunction of these constraints. Then,

M |= ϕDFAn ∧ ϕSn implies S+ ⊆ L(AM)) and S− ∩ L(AM) = ∅.
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Formula ϕTn

Let T = (QT ,Σ× Σ, qT0 ,∆
T , F T ). Establish

u ∈ L(AM) ∧ (u, u′) ∈ L(T ) ⇒ u′ ∈ L(AM)!

Introduce variables yq,q′,q′′ with with the meaning:

if there are u, u′ ∈ Σ∗ such that

AM : q0
u−→ q

T : qT0
(u,u′)−−−→ q′

AM : q0
u′
−→ q′′

,

then yq,q′,q′′ ≡ true.
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Formula ϕTn

Introduce constraints:

yq0,qT0 ,q0(
yp,p′,p′′ ∧ dp,a,q ∧ dp′′,b,q′′

)
→ zq,q′,q′′ for (p′, (a, b), q′) ∈ ∆T(

yq,q′,q′′ ∧ fq
)
→ fq′′ for q′ ∈ F T

Let ϕTn be the conjunction of these constraints.

Then, M |= ϕDFAn ∧ ϕTn implies

u ∈ L(AM) ∧ (u, u′) ∈ L(T )⇒ u′ ∈ L(AM).

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 13/16



Outline

1. Automata Learning

2. Regular Model Checking via Automata Learning

3. Experiments

4. Conclusion



Experiments - Integer Linear Systems
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Experiments - Token Ring
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Conclusion and Further Research

Summary

We presented a new technique for Regular Model Checking

based upon automata learning and logic solver.

Large sets of initial and bad con�gurations are approximated.

Experiments show competitiveness to other available tools.

Further Research

Possible directions of future research are

suitable non-regular representations of I and B,

nondeterministic automata as proofs, and

an incremental SAT approach.

An interesting extension would be to also approximate the

transducer.
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